2,710 research outputs found

    Three Bead Rotating Chain model shows universality in the stretching of proteins

    Full text link
    We introduce a model of proteins in which all of the key atoms in the protein backbone are accounted for, thus extending the Freely Rotating Chain model. We use average bond lengths and average angles from the Protein Databank as input parameters, leaving the number of residues as a single variable. The model is used to study the stretching of proteins in the entropic regime. The results of our Monte Carlo simulations are found to agree well with experimental data, suggesting that the force extension plot is universal and does not depend on the side chains or primary structure of proteins

    Model-based Control of the Scanning Tunneling Microscope: Enabling New Modes of Imaging, Spectroscopy, and Lithography

    Full text link
    The invention of scanning tunneling microscope (STM) dates back to the work of Binnig and Rohrer in the early 1980s, whose seminal contribution was rewarded by the 1986 Nobel Prize in Physics for the design of the scanning tunneling microscope. Forty years later, the STM remains the best existing tool for studying electronic, chemical, and physical properties of conducting and semiconducting surfaces with atomic precision. It has opened entirely new fields of research, enabling scientists to gain invaluable insight into properties and structure of matter at the atomic scale. Recent breakthroughs in STM-based automated hydrogen depassivation lithography (HDL) on silicon have resulted in the STM being considered a viable tool for fabrication of error-free silicon-based quantum-electronic devices. Despite the STM's unique ability to interrogate and manipulate matter with atomic precision, it remains a challenging tool to use. It turns out that many issues can be traced back to the STM's feedback control system, which has remained essentially unchanged since its invention about 40 years ago. This article explains the role of feedback control system of the STM and reviews some of the recent progress made possible in imaging, spectroscopy, and lithography by making appropriate changes to the STM's feedback control loop. We believe that the full potential of the STM is yet to be realized, and the key to new innovations will be the application of advanced model-based control and estimation techniques to this system

    Majorana Neutrino, the Size of Extra Dimensions, and Neutrinoless Double Beta Decay

    Full text link
    The problem of Majorana neutrino mass generated in Arkani-Hamed--Dimopoulos-Dvali model with n extra spatial dimensions is discussed. Taking into account constraints on neutrino masses coming from cosmological observations, it is possible to obtain lower limits on the size of extra dimensions as large as 10^{-6} mm. In the case of n=4 it is easy to lower the fundamental scale of gravity from the Planck energy to electroweak scale \~TeV without imposing any additional constraints. A link between the half-life of neutrinoless double beta decay and the size of extra dimensions is discussed.Comment: 5 pages, 1 figure, using RevTEX. Units conversion correcte

    Exactly Marginal Deformations of N=4 SYM and of its Supersymmetric Orbifold Descendants

    Get PDF
    In this paper we study exactly marginal deformations of field theories living on D3-branes at low energies. These theories include N=4 supersymmetric Yang-Mills theory and theories obtained from it via the orbifolding procedure. We restrict ourselves only to orbifolds and deformations which leave some supersymmetry unbroken. A number of new families of N=1 superconformal field theories are found. We analyze the deformations perturbatively, and also by using general arguments for the dimension of the space of exactly marginal deformations. We find some cases where the space of perturbative exactly marginal deformations is smaller than the prediction of the general analysis at least up to three-loop order), and other cases where the perturbative result (at low orders) has a non-generic form.Comment: 25 pages, 1 figure. v2: added preprint number, references adde

    On the Extra Mode and Inconsistency of Horava Gravity

    Full text link
    We address the consistency of Horava's proposal for a theory of quantum gravity from the low-energy perspective. We uncover the additional scalar degree of freedom arising from the explicit breaking of the general covariance and study its properties. The analysis is performed both in the original formulation of the theory and in the Stueckelberg picture. A peculiarity of the new mode is that it satisfies an equation of motion that is of first order in time derivatives. At linear level the mode is manifest only around spatially inhomogeneous and time-dependent backgrounds. We find two serious problems associated with this mode. First, the mode develops very fast exponential instabilities at short distances. Second, it becomes strongly coupled at an extremely low cutoff scale. We also discuss the "projectable" version of Horava's proposal and argue that this version can be understood as a certain limit of the ghost condensate model. The theory is still problematic since the additional field generically forms caustics and, again, has a very low strong coupling scale. We clarify some subtleties that arise in the application of the Stueckelberg formalism to Horava's model due to its non-relativistic nature.Comment: Discussion expanded; a figure added; accepted to JHE

    Constraints on Conformal Windows from Holographic Duals

    Full text link
    We analyze a beta function with the analytic form of Novikov-Shifman-Vainshtein-Zakharov result in the five dimensional gravity-dilaton environment. We show how dilaton inherits poles and fixed points of such beta function through the zeros and points of extremum in its potential. Super Yang-Mills and supersymmetric QCD are studied in detail and Seiberg's electric-magnetic duality in the dilaton potential is explicitly demonstrated. Non-supersymmetric proposals of similar functional form are tested and new insights into the conformal window as well as determinations of scheme-independent value of the anomalous dimension at the fixed point are presented.Comment: Fig. 5b is corrected to match the discussion in the tex

    Quantum Deconstruction of 5D SQCD

    Get PDF
    We deconstruct the fifth dimension of 5D SCQD with general numbers of colors and flavors and general 5D Chern-Simons level; the latter is adjusted by adding extra quarks to the 4D quiver. We use deconstruction as a non-stringy UV completion of the quantum 5D theory; to prove its usefulness, we compute quantum corrections to the SQCD_5 prepotential. We also explore the moduli/parameter space of the deconstructed SQCD_5 and show that for |K_CS| < N_F/2 it continues to negative values of 1/(g_5)^2. In many cases there are flop transitions connecting SQCD_5 to exotic 5D theories such as E0, and we present several examples of such transitions. We compare deconstruction to brane-web engineering of the same SQCD_5 and show that the phase diagram is the same in both cases; indeed, the two UV completions are in the same universality class, although they are not dual to each other. Hence, the phase structure of an SQCD_5 (and presumably any other 5D gauge theory) is inherently five-dimensional and does not depends on a UV completion.Comment: LaTeX+PStricks, 108 pages, 41 colored figures. Please print in colo

    Seiberg-Witten Description of the Deconstructed 6D (0,2) Theory

    Full text link
    It has recently been suggested that, in a large N limit, a particular four dimensional gauge theory is indistinguishable from the six dimensional CFT with (0,2) supersymmetry compactified on a torus. We give further evidence for this correspondence by studying the Seiberg-Witten curve for the "deconstructed" theory and demonstrating that along the reduced Coulomb branch of moduli space (on the intersection of the Higgs and Coulomb branches) it describes the low energy physics on a stack of M5-branes on a torus, which is the (0,2) theory on a torus as claimed. The M-theory construction helps to clarify the enhancement of supersymmetry in the deconstructed theory at low energies, and demonstrates its stability to radiative and instanton corrections. We demonstrate the role of the theta vacuum in the deconstructed theory. We point out that by varying the theta parameters and gauge couplings in the deconstructed theory, the complex structure of the torus can be chosen arbitrarily, and the torus is not metrically S^1 x S^1 in general.Comment: 13 pages, 2 figure

    Effect of Different Growth Conditions on Certain Biochemical Parameters of Different Cyanobacterial Strains

    Get PDF
    Aims: Variation in the traditional growth medium conditions to enhance the production of lipids, carbohydrates, protein and the free amino acids content of three cyanobacterial species. Methodology and Results: Three species of cyanobacteria (Anabaena laxa, Anabaena fertilissima and Nostoc muscorum) were collected from the culture collection of Soils, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, to investigate their biochemical composition under different growth conditions, using BG110 (nitrogen free) as growth medium. These conditions were represented by control medium, static glucose medium with (1%, w/v), aerated medium (aerated by bubbling technique depending on CO2 normally existed in air with a concentration of 0.03%), molasses medium (0.7%, v/v) and aerated medium enriched with glucose (1%, w/v). Lipid content, total carbohydrates, soluble proteins and free amino acids were determined at the previous conditions. Glucose at 0.7% (w/v) was the most favorable for lipid production in A. laxa, where it exhibited the highest lipid content (427 μg/g fresh wt.). Increasing molasses concentration up to 0.7% (v/v) produced an increase in lipid contents of the tested cyanobacterial strains. The highest lipid content of both N. muscorum (366.2 μg/g fresh wt.) and A. laxa (357.4 μg/g fresh wt.) were recorded at molasses concentrations of 0.1 and 0.7% (v/v), respectively. A. laxa expressed high significant values for both proteins (31.6 μg/mL) and free amino acids (40.5 mg/g dry wt.) after 6 days of incubation period under aerated enriched glucose condition (1%, w/v). Also, at the same growth conditions, A. fertilissima exhibited high significant values for carbohydrates at 4th day (876.8 mg/g dry wt.). Conclusion, significance and impact of study: Aerated enriched glucose medium (1%, w/v) was the best growth medium condition used in the present study

    No-Go Theorem for Horizon-Shielded Self-Tuning Singularities

    Get PDF
    We derive a simple no-go theorem relating to self-tuning solutions to the cosmological constant for observers on a brane, which rely on a singularity in an extra dimension. The theorem shows that it is impossible to shield the singularity from the brane by a horizon, unless the positive energy condition (rho+p >= 0) is violated in the bulk or on the brane. The result holds regardless of the kinds of fields which are introduced in the bulk or on the brane, whether Z_2 symmetry is imposed at the brane, or whether higher derivative terms of the Gauss-Bonnet form are added to the gravitational part of the action. However, the no-go theorem can be evaded if the three-brane has spatial curvature. We discuss explicit realizations of such solutions which have both self-tuning and a horizon shielding the singularity.Comment: 7 pages, 4 figures, revtex; added reference and minor correction
    corecore